10º Congreso Nacional del Medio Ambiente (Conama 10)

Captura y almacenamiento de CO₂

Captura de CO₂ en precombustión

Francisco García Peña

ELCOGAS S.A

Captura de CO₂ en precombustión

ÍNDICE

. Generalidades

. PASO 1: Producción syngas

. PASO 2: Conversión CO a CO₂

. PASO 3: Separación CO₂/H₂

. PASO 4: Purificación H₂

. Uso de combustibles con bajo contenido en carbono

. Planta Piloto de Captura de CO₂ . Proyecto Singular Estratégico (PSE)

Paso 1: Obtención del gas de síntesis por gasificación

Compuesto
Carbonoso
$$+ O_2 + H_2O \longrightarrow CO + H_2 + impurezas$$

Paso 2: "Shifting" o reacción gas-agua

$$CO + H_2O \longrightarrow CO_2 + H_2$$

Paso 3: Separación de H₂ y CO₂

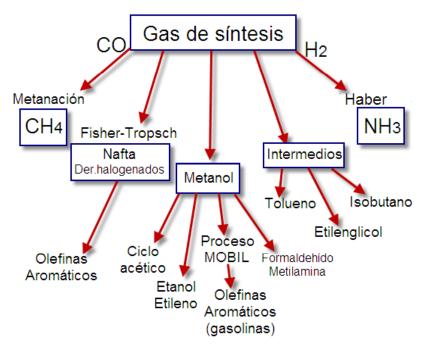
considerar la CAC

CO₂

La producción de H_2 a partir de combustibles fósiles lleva implícita la generación de $CO_2 \Rightarrow$ Para poder hablar de H_2 "limpio" hay que

- > Cenizas
- > Char
- >CI-
- > CN-
- > SH₂
- >COS
- $> N_2$

••••


10º Congreso Nacional del Medio Ambiente

PASO 1	PASO 2	PASO 3	PASO 4
PRODUCCIÓN SYNGAS	CONVERSIÓN CO A CO ₂	SEPARACIÓN CO ₂ /H ₂	PURIFICACIÓN H₂
Reformado GN POX ATR Gasificación - GICC Chemical looping	Reacción WGS	Procesos químicos con absorbentes Procesos físicos con absorbentes Procesos físico-químicos Adsorción Membranas Criogenia	PSA Permeación Destilación criogénica
		Tecnologías emergentes	

CONAMAIO
CONGRESO NACIONAL
DEL MEDIO AMBIENTE

Además de para producir electricidad, el gas de síntesis tiene otras aplicaciones en la industria química

Aplicaciones gas de síntesis

Armando Martín / www.icp.csis.es/memoria 2004

CONAMAIO
CONGRESO NACIONAL
DEL MEDIO AMBIENTE

Reformado con vapor de gas natural o hidrocarburos ligeros (SMR)

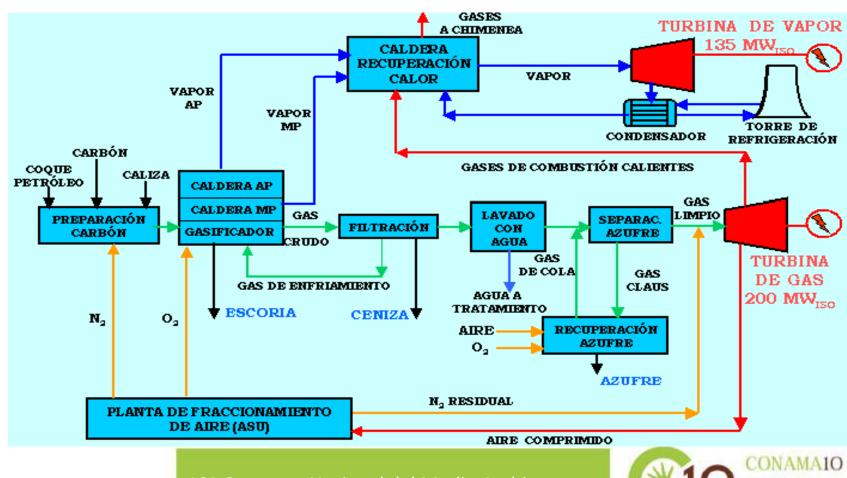
- Existen plantas de hasta 480 t/día H₂ y 2500 t/día CO₂
- Paso previo: eliminación azufre del combustible alimentación

Oxidación parcial de gas natural e hidrocarburos ligeros (POX)

- El combustible reacciona con oxígeno puro a alta presión para producir el gas de síntesis. Proceso exotérmico. Alta temperatura (1250-1400 ºC). No requiere aporte de calor de ninguna fuente externa

Reformado autotérmico de gas e hidrocarburos ligeros (ATR)

- Combinación del reformado y la oxidación parcial
- El calor necesario para la reacción de reformado es aportado por la de oxidación parcial usando oxígeno o aire


Gasificación de carbón, biomasa, residuos de petróleo y otros residuos

- Oxidación parcial de los combustibles, pudiéndose utilizar también vapor como agente oxidante en el reactor (denominado gasificador)
- **Tipos** gasificadores: lecho fijo, lecho fluido, lecho arrastrado
- Oxidante principal: aire u oxígeno (mejor este último si se desea capturar CO₂ a alta presión)
- **Temperatura** operación: hasta 1800 ºC
- **Presiones**: entre 0,1 y 7MPa

PASO 1: Producción syngas

Gasificación de carbón, biomasa, residuos de petróleo y otros residuos

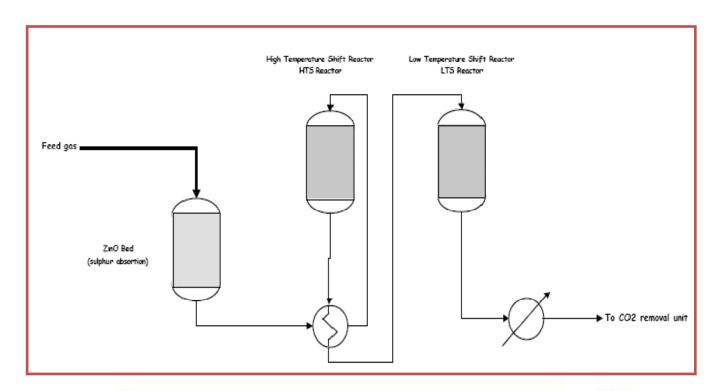
10º Congreso Nacional del Medio Ambiente

Centrales eléctricas de gasificación integrada en ciclo combinado (GICC)

- El gas de síntesis, que tras procesos de limpieza pasa a denominarse gas limpio, se envía a una turbina de gas para producir electricidad, y el calor que contienen sus gases de escape se aprovecha en una caldera de recuperación de calor donde se genera más vapor para mover la turbina de vapor, produciendo de nuevo electricidad, constituyendo un ciclo combinado.
- Para adaptar un proceso GICC, capturando el CO₂ y conseguir una central con emisiones cero (ZEIGCC), sería necesario implantar las siguientes modificaciones:

Unidad de Conversión de CO en CO₂ e H₂ para poder separar CO₂

Unidad de Captura del CO₂ con disolventes por procesos químicos o físicos



Adaptaciones de quemadores y condiciones de operación Turbina de gas

Reacción water gas shift (WGS) para convertir el CO del gas de síntesis en CO₂

$$CO + H_2O \longrightarrow CO_2 + H_2 \qquad \Delta H = -41 \text{ KJmol}^{-1}$$

CONAMA1O
CONGRESO NACIONAL
DEL MEDIO AMBIENTE

- Objetivo: Separar CO₂ de la corriente de gas formado por CO₂/H₂
- El CO₂ separado queda disponible para su almacenamiento
- El gas producido (mayoritariamente H₂) puede utilizarse:
 - . Como combustible descarbonatado
 - . Como base para la obtención de hidrógeno puro
 - . Para producir nuevos combustibles o productos químicos líquidos con mayores ratios H/C a partir del gas de síntesis

MÉTODO	COMENTADIOC
MÉTODO	COMENTARIOS
Procesos químicos con absorbentes	 Absorbentes químicos usados para eliminar el CO₂ del gas de síntesis a presiones parciales por debajo de 1,5 MPa Proceso más usado: MDEA (Metil DiEtanol Amina)
Procesos físicos con absorbentes	 Aplicables a corrientes con altas presiones totales o altas presiones parciales de CO₂ La generación del disolvente se produce por liberación de presión en una o más etapas
Absorción físico -química	- Mejor eficiencia energética pero utilizable a presiones superiores a 2 MPa, produce una corriente de CO_2 lista para su almacenamiento o utilización, y una corriente rica en H_2 que puede utilizarse directamente como combustible, o que se purifica en unidades PSA para conseguir purezas de entre 90 y 99,999 % según su especificación final
Adsorción	 Requiere cantidades de adsorbente, pero su selectividad al H₂ es alta, por lo que se utiliza en corrientes pequeñas o para purificar el H₂ obtenido en un proceso de separación anterior
Membranas	 Actualmente bajo porcentaje de recuperación del H₂, por lo que se aplican para separar una fracción del H₂ contenido en el gas, pero no se obtiene una corriente de CO₂ concentrado lista para almacenamiento
Criogenia	 Muy alto consumo energético Solo es aplicable en procesos donde los productos del proceso criogénico tienen un valor añadido alto

<u>Tecnologías emergentes</u>

- <u>Reacción de adsorción mejorada (SER):</u> Uso de un lecho empaquetado que contiene una mezcla de catalizador y adsorbente selectivo para eliminar el CO₂ de la zona de reacción a alta temperatura
- Reactores de membrana para producción de hidrógeno con captura de CO₂:
 Algunas membranas inorgánicas ofrecen la posibilidad de combinar los procesos de reacción gas-agua y separación a alta presión y temperatura
- **<u>Reformado en microcanales</u>**: Se puede aplicar la tecnología de micro reactores para llevar a cabo el SMR o POX de baja temperatura

PASO 3: Separación CO₂/H₂

Tecnologías emergentes

- Conversión de metano a hidrógeno y carbono: Reacción de cracking térmico o pirólisis cuya ventaja es la producción de un gas limpio (sin CO₂) que podría usarse directamente como combustible, y cuyo inconveniente es que se deja de obtener la energía que produce la oxidación del carbono
- <u>Tecnologías basadas en óxidos de calcio:</u> Son sistemas de precombustión basados en la reacción de carbonatación de la cal a altas presiones y temperaturas, que integra además la gasificación del combustible, la reacción de conversión shift y la eliminación in-situ del CO₂ con CaO

PASO 4: Purificación H₂

PURIFICACIÓN DE H₂ EN GICC: TECNOLOGÍAS

1. ADSORCIÓN: PROCESO PSA (pressure Swing Adsorption)	Adsorción de los componentes indeseados (moléculas de mayor tamaño: ${\rm CO, CO_2}$) a alta presión, y deserción a baja presión. Se obtiene corriente de hidrógeno puro y a elevada presión
2. PERMEACIÓN: POLÍMEROS / MEMBRANAS	Permeación más veloz del hidrógeno a través de un polímero / membrana, separándose del CO. Cuanta mayor pureza, menor tasa de recuperación del H ₂
3. DESTILACIÓN CRIOGÉNICA	Diferentes puntos de ebullición del H ₂ (-252,8 ºC a 1 atm) y el CO (-191,5 ºC a 1 atm), que se separa por cola

- Las técnicas de captura en precombustión van ligadas al desarrollo de tecnologías que aprovechen el combustible "descarbonizado" que se obtiene como producto.
- A nivel industrial existen quemadores y calderas convencionales suficientemente probadas para hidrógeno.
- En las plantas alimentadas con carbón (GICC), basadas en procesos de oxidación parcial, el nitrógeno proviene de la unidad de separación de aire, y se inyecta al combustible "descarbonizado".

PLAN DE INVERSIONES EN I+D+i

Desde 2007 ELCOGAS ha seguido un Plan de Inversión en I+D+i orientado al desarrollo de la tecnología GICC, con el objetivo principal de disminuir el impacto ambiental de la producción de energía.

ELCOGAS presenta un informe anual de resultados de dicho Plan de I+D+i al gobierno español para su evaluación.

LAS LÍNEAS PRINCIPALES DEL PLAN DE I+D+i SON:

- > REDUCCIÓN DE EMISIONES DE CO2 CON USO DE COMBUSTIBLES FÓSILES
- > PRODUCCIÓN DE H₂ POR GASIFICACIÓN DE COMBUSTIBLES FÓSILES
- **DIVERSIFICACIÓN** DE COMBUSTIBLES Y PRODUCTOS
- > OTRAS MEJORAS MEDIOAMBIENTALES
- > OPTIMIZACIÓN DE PROCESOS GICC
- **DIVULGACIÓN Y DISEMINACIÓN** DE RESULTADOS

16

PSE - CO2

PLAN DE INVERSIONES EN I+D+i

Linea CO2

OBJETIVOS

- ▶ Demostrar la viabilidad de la captura de CO₂ y producción de H₂ en un GICC que emplea combustibles fósiles sólidos y residuos como fuente de alimentación principal.
- Obtener datos económicos suficientes para escalar el proyecto a la capacidad total de producción de gas de síntesis del GICC de Puertollano.

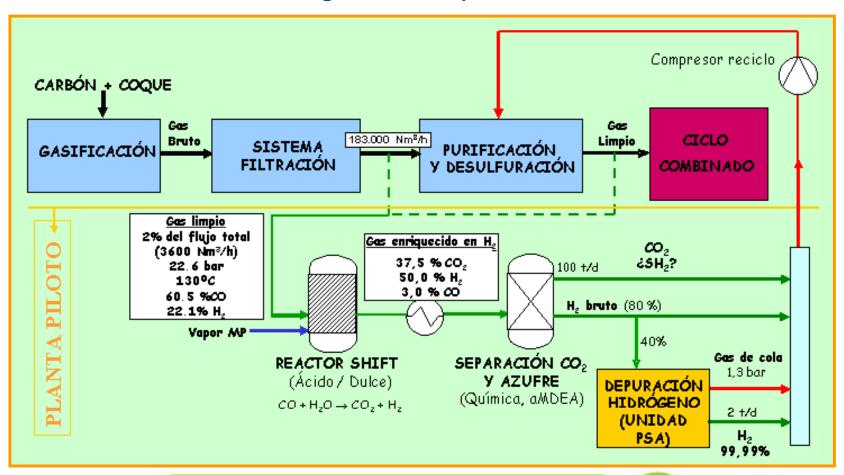
PARTICIPANTES Y PRESUPUESTO

ELCOGAS – UCLM – Ciemat – INCAR CSIC

14 M€ (inicialmente 18.5 M€)

COORDINACIÓN

- ➢ El proyecto de la planta piloto en el GICC de Puertollano es parte de una iniciativa española, "Tecnologías avanzadas de conversión, captura y almacenamiento de CO₂" y se coordina junto con otros proyectos relacionados:
- Proyecto # 2 Consiste en estudios de oxicombustión para aplicar en la construcción de una planta piloto (20-30 MW) que se construirá en El Bierzo, NO de España. CIUDEN
- ▶ Proyecto # 3 Consiste en el estudio y regulación del almacenamiento geológico de CO₂ en España. IGME
- Proyecto #4 Consiste en el análisis de la conciencia pública acerca de las tecnologías de CAC. CIEMAT



"Una manera de hacer Europa"

10º Congreso Nacional del Medio Ambiente

Diagrama de bloques

18

Construcción de la Planta Piloto de Captura de CO₂ y Producción de H₂

Agosto 2010

CONAMA1O
CONGRESO NACIONAL
DEL MEDIO AMBIENTE